Journal of Organometallic Chemistry, 388 (1990) C9-C11 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands JOM 20838PC

Preliminary communication

Electrochemical studies on organometallic compounds

XXXIV *. Redox properties of tetraphenyldistibane

Y. Mourad and Y. Mugnier

Laboratoire de Synthèse et d'Electrosynthèse Organométalliques associé au CNRS (URA 33), Faculté des Sciences, 6bd Gabriel, 21000 Dijon (France)

H.J. Breunig and M. Ateş

Universität Bremen, Fachbereich 2, Postfach 330 440, D 2800 Bremen 33 (F.R.G.)

(Received January 22nd, 1990)

Abstract

The uptake of two electrons by $(Ph_2Sb)_2$, 1, yields Ph_2Sb^- , 2. Two-electron oxidation of 1 gives the cationic species Ph_2Sb^+ , 3. At room temperature 3 is reduced in two steps to 2 via the intermediate Ph_2Sb , 4.

There have been only a few electrochemical studies on organoantimony compounds [1-4]. Following our investigations of the electrochemistry of organotransition metal species containing metal-metal bonds [5], we report here the electrochemical behaviour of tetraphenyldistibane 1, a compound containing an Sb-Sb bond.

The polarogram of 1 in tetrahydrofuran (with 0.2 *M* tetrabutylammonium hexafluorophosphate as supporting salt) exhibits a reduction wave D ($E_{1/2} = -1.84$ V) and an oxidation wave E' ($E_{1/2} = 0.17$ V vs SCE(aq)) (see Fig. 2a). In cyclic voltammetry on a platinum electrode after reduction at the potential of peak D, a peak A'_1 is observed (Fig. 1a) that corresponds to the oxidation of Ph₂Sb⁻. This anion has been generated by electrochemical [2] and chemical [6] methods. Reversal of the anodic sweep after peak E' gives rise to a reduction peak E_1 (Fig. 1b).

Electrolysis of 1 at -30° C at the potential of peak E' consumes two faradays and the polarogram of the electrolyzed solution exhibits two reduction waves, E_1 and D (Fig. 2b). When the temperature in raised wave D disappears, and a new reduction wave, A_1 , appears (Fig. 2c). The same polarogram is obtained after electrolysis of 1 at room temperature.

^{*} For part XXXIII see ref. 9.

Fig. 1. Cyclic voltammograms of $(Ph_2Sb)_2$ in tetrahydrofuran on platinum electrode. Sweep rate 0.2 V s⁻¹. (a) Cathodic sweep, starting potential 0 V; (b) anodic sweep, starting potential -1.5 V.

In cyclic voltammetry after reduction at peak A_1 the peak A'_1 is not observed. If chloride ions (LiCl in THF) are introduced into to the electrolyzed solution the reduction waves of Ph₂SbCl [7] appear. These results can be rationalized in terms of Scheme 1.

Fig. 2. Polarogram (average current) of $(Ph_2Sb)_2$ in tetrahydrofuran. (a) Before electrolysis; (b) after two-electron oxidation at +0.2 V at -30° C; (c) at room temperature.

Scheme 1

The oxidation of 1 yields quantitatively a cationic species that we believe to be Ph_2Sb^+ , 3. The following results are in accordance with the formation of this cation:

- 1. Species 3 is obtained by two-electron oxidation of 1, which implies that there is a change from Sb(II) in 1 to Sb(III) in 3.
- 2. The reduction potential of the cation 3 is, as would be expected, lower than the reduction potential of neutral Sb(III) species.
- The reduction of 3 at -30°C yields 1, which is reduced at the potential of wave D (see Fig. 2b, Scheme 1, path 3 ⇒ 4 ⇒ 1 ⇒ 2).
- 4. Addition of Cl^- to the solution of 3 gives Ph_2SbCl .
- 5. If the electrolysis is performed with Bu_4NClO_4 as supporting salt, $Ph_2Sb^+ClO_4^-$ is obtained [2,8].

At room temperature the second reduction step of 3 (wave A_1) appears close to the potential of oxidation of 2 (wave A'_1). Therefore the wave A_1 contributes to the reduction of the intermediate Ph₂Sb, 4, formed close to the electrode, to yield Ph₂Sb⁻, 2. The oxidation peak of 2 is not observed in cyclic voltammetry of 3 because electrogenerated 2 reacts with 3 give 1.

We are currently investigating the chemical oxidation of 1.

References

- 1 J.H. Wagenknecht, Ph.D. Dissertation, Feb. 1964, State University of Iowa, cited in [2].
- 2 R.E. Dessy, T. Chivers and W. Kitching, J. Am. Chem. Soc., 88 (1966) 467.
- 3 R.E. Dessy, P.H. Weissman and R.L. Pohl, J. Am. Chem. Soc., 88 (1966) 5117.
- 4 A.S. Romaklin, E.V. Nikitin, O.V. Parakin, Yu.A. Ignat'ev, B.S. Mironov and Yu.M. Kargin, Zh. Obshch. Khim., 56 (1986) 2597.
- 5 P. Reeb, Y. Mugnier, C. Moïse and E. Laviron, J. Organomet. Chem., 273 (1984) 247; P. Lahuerta, J. Soto, Y. Mugnier, C. Moïse and E. Laviron, New J. Chem., 11 (1987) 411.
- 6 M. Wieber, in Gmelin, Handbook of Inorganic Chemistry, Sb Organoantimony Compounds, Part 2, Springer Verlag, Berlin, 1981, p. 57f.
- 7 Y. Mugnier and H.J. Breunig, unpublished results.
- 8 M. Wieber, in [5] p. 20.
- 9 H. Nabaoui, Y. Mugnier, A. Fakhr, E. Laviron, J. Mofidi, A. Antinolo, F.A. Jalon, M. Fajardo and A. Otero, J. Organomet. Chem., 362 (1989) C8.